
DOI: 10.1002/asia.200700042

CO₂ Fixation and Transformation by a Dinuclear Copper Cryptate under Acidic Conditions

Jia-Mei Chen, Wei Wei, Xiao-Long Feng, and Tong-Bu Lu*[a]

Abstract: CO_2 fixation and transformation by metal complexes continuously receive attention from the viewpoint of carbon resources and environmental concerns. We found that the dinuclear copper(II) cryptate $[Cu_2L^1](ClO_4)_4$ (1; $L^1 = N[(CH_2)_2NHCH_2(m-C_6H_4)CH_2-NH-(CH_2)_2]_3N)$ can easily take up atmospheric CO_2 even under weakly acidic conditions at room temperature and convert it from bicarbonate into

carbonate monoesters in alcohol solution. The compounds $[Cu_2L^1(\mu-O_2COH)](ClO_4)_3$ (2), $[Cu_2L^1(\mu-O_2COR)](ClO_4)_3$ (3: $R=CH_3$; 4: $R=C_2H_5$; 5: $R=C_3H_7$; 6: $R=C_4H_9$; 7: $R=C_4H_9$; 7:

Keywords: absorption • carbon dioxide fixation • copper • cryptands • density functional calculations

 C_5H_{11} ; **8**: $R = CH_2CH_2OH$), $[Cu_2L^1(\mu - O_2CCH_3)](CIO_4)_3$ (**9**), and $[Cu_2L^1(OH_2)(NO_3)](NO_3)_3$ (**10**) were characterized by IR spectroscopy and ESI-MS. The crystal structures of **2–6** and **10** were studied by single-crystal X-ray diffraction analysis. On the basis of the crystal structures, solution studies, and DFT calculations, a possible mechanism for CO_2 fixation and transformation is given.

Introduction

The chemical fixation and transformation of atmospheric CO₂ have been of long-standing interest, as excess CO₂ is an atmospheric pollutant.^[1] CO₂ can potentially be used as a substrate for storing solar energy^[2] and as an attractive C1 feedstock for the preparation of useful carbon-containing compounds its reaction with metal complexes.[3] So far, a great deal of research has been done on the reactivity of CO₂, including its hydration products such as HCO₃^{-[4]} and CO₃^{2-,[5]} as well as its derivatives such as alkyl carbonate^[6-8] and carbamate. [9] Kato and Ito[7] found that a mononuclear metal-tetraazacycloalkane complex in alcohol can take up atmospheric CO₂ under alkaline conditions and fix it as the carbonate monoester at the metal center. Dinuclear macrocyclic complexes have also been reported for CO2 fixation and transformation.^[8] In general, CO₂ uptake takes place in basic or neutral reaction media; [5,7] few metal complexes can fix atmospheric CO₂ under acidic conditions.^[8a]

We focused our attention on the polyaza cryptands L^1 and L^2 (Scheme 1), which incorporate tripodal skeleton groups and contain two binding subunits located at the two poles of the structures, as well as their dinuclear metal complexes, as they have unique recognition and catalytic properties with

Scheme 1. Structures of L^1 , L^2 , and L^3 .

regard to various small molecules and ions. [10-14] We previously demonstrated that the C–C bond of acetonitrile can be cleaved by the dinuclear copper complex $[Cu_2L^2](ClO_4)_4$ at room temperature to generate the cyano-bridged complex $[Cu_2L^2(CN)](ClO_4)_3$ and methanol. [14] Based on this work, we presumed that the dinuclear copper complex $[Cu_2L^1](ClO_4)_4$ (1), which has a structure similar to $[Cu_2L^2](ClO_4)_4$, may also cleave the C–C bond of acetonitrile. However, no cyano-bridged dinuclear complex was formed under similar reaction conditions. Instead, 1 easily absorbed atmospheric CO_2 in weakly acidic reaction media at room temperature to form the bicarbonate-bridged complex $[Cu_2L^1(\mu-O_2COH)](ClO_4)_3$ (2), which further reacted with primary alcohols to generate carbonate monoesters of $[Cu_2L^1(\mu-O_2COR)](ClO_4)_3$ (3: $R=CH_3$; 4: $R=C_2H_5$; 5: $R=C_3H_7$; 6:

J.-M. Chen, W. Wei, X.-L. Feng, Prof. Dr. T.-B. Lu
 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
 State Key Laboratory of Optoelectronic Materials and
 School of Chemistry and Chemical Engineering
 Sun Yat-Sen University
 Guangzhou 510275 (China)
 Fax: (+86) 20-84112921

E-mail: lutongbu@mail.suysu.edu

Supporting information for this article is available on the WWW under http://www.chemasianj.org or from the author.

Table 1. Crystallographic data for 2-6 and 10.

Compound	2·2CH ₃ CN	3·2CH ₃ CN	3 ·4.5CH ₃ CN·0.5H ₂ O	4·2CH ₃ CN	5·CH ₃ CN	6·CH₃CN	10 ·2H ₂ O
Formula	$C_{41}H_{61}Cl_{3}Cu_{2}N_{10}O_{15} \\$	$C_{42}H_{63}Cl_{3}Cu_{2}N_{10}O_{15}$	$C_{47}H_{71}Cl_{3}Cu_{2}N_{12.5}O_{15.5}$	$C_{43}H_{65}Cl_3Cu_2N_{10}O_{15}$	$C_{42}H_{64}Cl_3Cu_2N_9O_{15}$	$C_{43}H_{66}Cl_3Cu_2N_9O_{15}$	$C_{36}H_{60}Cu_2N_{12}O_{15}$
M_{r}	1167.43	1181.45	1290.58	1195.48	1168.45	1182.48	1028.04
Crystal size	$0.36 \times 0.23 \times 0.22$	$0.42 \times 0.35 \times 0.27$	$0.42 \times 0.34 \times 0.34$	$0.62 \times 0.51 \times 0.49$	$0.58 \times 0.46 \times 0.40$	$0.55 \times 0.50 \times 0.42$	$0.29 \times 0.28 \times 0.22$
[mm ³]							
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_{1}/n$	$P\bar{1}$	$P2_{1}/n$	$P2_1$	$P2_1$	$P2_{1}/c$
a [Å]	16.975(7)	16.861(5)	14.338(4)	16.8448(15)	11.5642(2)	11.582(5)	14.367(2)
b [Å]	16.631(7)	17.197(6)	14.378(4)	17.5221(16)	14.199(3)	14.176(6)	14.154(2)
c [Å]	19.188(8)	19.640(6)	16.080(4)	19.6620(18)	15.587(3)	15.490(7)	23.347(3)
α [°]	90	90	79.734(5)	90	90	90	90
β [°]	109.444(9)	113.186(6)	67.938(4)	113.509(2)	91.303(5)	91.748(6)	111.690(7)
γ [°]	90	90	87.829(4)	90	90	90	90
V [Å ³]	5108(4)	5253(3)	3021.5(13)	5231.7(8)	2558.8(9)	2541.9(19)	4411.5(10)
Z	4	4	2	4	2	2	4
$\mu \ [\mathrm{mm}^{-1}]$	1.064	1.039	0.909	1.023	1.062	1.070	1.046
Reflections col-	22 832	31 309	26098	28237	12657	15791	24199
lected							
Unique reflec-	7097 (0.0440)	11456(0.0359)	13 081(0.0345)	10451(0.0236)	9255(0.0248)	9864(0.0340)	9676(0.0738)
tions (R_{int})							
GOF on F^2	1.089	1.015	1.069	1.032	1.016	1.013	0.995
R1,[a] $wR2$ [b]	0.0627, 0.1692	0.0639, 0.1649	0.0639, 0.1675	0.0587, 0.1622	0.0456, 0.1032	0.0423, 0.1050	0.0741, 0.1861
$(I > 2\sigma(I))$							
R1,[a] $wR2$ [b] (all	0.1006, 0.1969	0.1145, 0.2032	0.1170, 0.1987	0.0821, 0.1871	0.0723, 0.1206	0.0595, 0.1160	0.1964, 0.2595
data)							

[a] $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. [b] $wR2 = \{\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma w(F_0^2)^2\}^{\frac{1}{2}}$, in which $w = 1/[\sigma^2(F_0)^2 + (aP)^2 + bP]$ and $P = (F_0^2 + 2F_c^2)/3$.

 $R\!=\!C_4H_9;$ **7**: $R\!=\!C_5H_{11};$ **8**: $R\!=\!CH_2CH_2OH).$ Although Martell and co-workers $^{[11]}$ and Nelson and co-workers $^{[12]}$ found that the reaction of $Cu(C1O_4)_2$ with L^1 in water and CH_3OH/CH_3CN gave the products $[Cu_2L^1(\mu\text{-}CO_3)(H_3O)]Br_3$ and $[Cu_2L^1(\mu\text{-}O_2COCH_3)](ClO_4)_3,$ respectively, the reaction mechanism has not been established.

To investigate the mechanism of CO_2 fixation and transformation by $[Cu_2L^1]^{4+}$, and to understand why $[Cu_2L^1]^{4+}$ prefers CO_2 fixation to C–C bond cleavage of acetonitrile, μ -O₂COH-bridged cryptate **2** and a series of μ -O₂COR⁻bridged dinuclear copper(II) cryptates **3–8** were synthesized. For comparison, dinuclear copper(II) cryptates $[Cu_2L^1(\mu$ -O₂CCH₃)](ClO₄)₃ (**9**) and $[Cu_2L^1(OH_2)(NO_3)](NO_3)_3$ (**10**),

Abstract in Chinese:

鉴于碳源与环境污染问题,金属配合物对 CO_2 的吸收与活化一直以来受到人们的关注。我们发现一种双核 Cu(II)穴醚化合物[Cu_2L^1](ClO_4)4 (1; L^1 = N[(CH_2)2NHCH2(m- C_6 H4)CH2NH(CH_2)2]3N)在室温和弱酸性条件下可以吸收空气中 CO_2 生成 CO_3 H 桥联配合物,在醇溶液中可以进一步转化成碳酸单酯桥联配合物。通过红外和质谱等对化合物[Cu_2L^1 (μ - O_2COH)](ClO_4)3 (2),[Cu_2L^1 (μ - O_2COR)] (ClO_4)3 (3: $R=CH_3$; 4: $R=C_2H_5$; 5: $R=C_3H_7$; 6: $R=C_4H_9$; 7: $R=C_5H_{11}$; 8: $R=CH_2CH_2OH$,[Cu_2L^1 (μ - O_2CCH_3)](ClO_4)3 (9),和[Cu_2L^1 (OH_2)(OH_2)(OH_3)(OH_3)(OH_3) (10)进行表征,并对化合物 2-6 和 10 的晶体结构进行了研究。基于晶体结构、溶液性质及 DFT 理论计算结果,提出了 CO_2 吸收与活化的反应机理。

as well as the mononuclear compound $[CuL^3(H_2O)](ClO_4)_2$, were also prepared. A reasonable mechanism for CO_2 fixation and transformation is presented herein, based on crystal structures, solution studies, and DFT calculations. The difference in reactivity between $[Cu_2L^1]^{4+}$ and $[Cu_2L^2]^{4+}$ is also discussed in this paper.

Results and Discussion

The reaction of Cu(ClO₄)₂·6H₂O and L¹ in methanol at pH 5–6 gave a blue mixture of **2** and **3** within a few minutes, which was dissolved in acetonitrile and evaporated slowly at room temperature to give blue crystals of **2**·2CH₃CN and **3**·4.5CH₃CN·0.5H₂O. Slow evaporation of a solution of **1** in acetonitrile in an open vessel at room temperature afforded blue crystals of **2**·CH₃CN. Cryptate **2** reacted further with primary alcohols to form monoalkylcarbonate-bridged cryptates **3**–**8**.

X-ray Structures

Attempts to solve the structures of **7**, **8**, and **9** were unsuccessful owing to the poor quality of the crystals; the crystal structures of the other complexes **2–6** and **10** were determined by X-ray crystallography (Table 1). During the period of this research, the structure of **2**·CH₃CN was reported.^[8b] The structure of **2**·2CH₃CN is similar to that of **2**·CH₃CN. In **2**·2CH₃CN, each Cu^{II} ion is five-coordinated with four nitrogen atoms of L¹ and one oxygen atom of μ-O₂COH⁻, and

the μ -O₂COH⁻ ligand shows a symmetrical bridging mode (Figure 1 a) with a Cu···Cu separation of 6.01 Å. For each Cu center, one Cu–N bond (Cu1–N2 and Cu2–N6) is longer

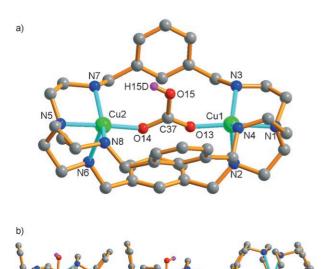


Figure 1. a) Structure of $[Cu_2L^1(\mu\text{-}O_2COH)]^{3+}$ in **2**·2CH₃CN. b) View of the cryptate cations along the Cu_2 axis, showing the different conformations of the ligands: form A (left) in **2**·2CH₃CN, form B (middle) in **2**·CH₃CN, and rigid tripodal skeleton (right) in $[Cu_2L^2(CN)]^{3+}$.

than the other four Cu–N/O bonds (Table 2). The parameters (τ) for the geometry of the five-coordinated Cu^{II} ions^[15] are 0.81 for Cu1 and 0.60 for Cu2 (τ =1.00 for TBP (trigonal bipyramidal) and 0.00 for SP (square pyramidal)), thus indicating that distorted TBP geometry are adopted at both Cu1 and Cu2, with Cu2 showing more deviation from TBP geometry. In [Cu₂L²(CN)](ClO₄)₃,^[14] the τ value for each

Cu^{II} ion is 1.00, which indicates that the geometry at each Cu^{II} ion is ideal TBP. The different geometries at the Cu^{II} ions in 2·2CH₃CN and [Cu₂L²(CN)](ClO₄)₃ are caused by the different conformations of the cryptands (Figure 1b). In 2·2CH₃CN, L¹ adopts the conformation form A, in which the two phenyl rings are oriented in the same direction, leading to distorted TBP geometry at Cu^{II}. In [Cu₂L²(CN)](ClO₄)₃, however, the rigid tripodal skeleton of L² makes the Cu^{II} ions prefer TBP to SP geometry. In 2·CH₃CN, L¹ adopts the conformation form B (Figure 1b), in which the two phenyl rings are oriented in opposite directions. This indicates that the conversion of form A into form B does not involve a high energy barrier.

The cryptates **3–6** show similar structures (Figure 2), in which each Cu^{II} ion is also five-coordinated with four nitrogen atoms of L^1 and one oxygen atom of the corresponding bridging carbonate monoester. The τ values for Cu^{II} ions in **3–6** range from 0.80 to 0.32, which indicates that distorted TBP or SP geometry is adopted at the Cu^{II} ions. In **3–6**, all the μ -O₂COR⁻ ligands show an unsymmetrical bridging mode, and this leads to significant contraction of Cu-Cu separations (5.64–5.78 Å) relative to that in **2** (Table 2). The Cu–O bonds in the symmetrical mode are close to those in the unsymmetrical mode (Table 2), thus indicating that the unsymmetrical nature of the bonding is mainly due to the different C–O–Cu angles. In addition, all the L^1 cryptands in **3–6** adopt the conformation form B.

In **10**, both Cu^{II} ions are five-coordinated (Figure 3): Cu1 is bound to four nitrogen atoms of L^1 and one oxygen atom of NO_3^- , and Cu2 is coordinated to four nitrogen atoms of L^1 and one water molecule. The τ values are 0.42 and 0.75 for Cu1 and Cu2, respectively, which indicates that the geometry at Cu1 is distorted SP, whereas the geometry at Cu2 is closer to TBP. In **10**, the Cu····Cu separation of 6.521 Å is much longer than those in **2–6**. There is an intramolecular hydrogen bond between the coordinated water molecule (H14A) and a noncoordinated oxygen atom (O11) of NO_3^- ; the O14···O11 distance is 2.726 Å, and the O14–H14A···O11 angle is 170.4°.

Table 2. Selected bond lengths [Å] and angles [°] for 2-6 and 10.

	2·2CH ₃ CN	3·2CH ₃ CN	$3\cdot4.5$ CH ₃ CN $\cdot0.5$ H ₂ O	4·2CH ₃ CN	5·CH ₃ CN	6·CH₃CN	10-2H ₂ O
Cu1-O13	1.911(5)	1.940(5)	1.936(3)	1.941(4)	1.938(3)	1.934(3)	1.969(5)
Cu2-O14	1.922(6)	1.995(5)	1.941(4)	1.953(3)	1.946(4)	1.938(4)	1.933(5)
Cu1-N1	2.040(5)	2.043(4)	2.041(4)	2.043(3)	2.049(4)	2.045(4)	2.042(5)
Cu2-N5	2.040(6)	2.039(4)	2.030(4)	2.042(3)	2.041(4)	2.027(4)	2.009(5)
Cu1-N2	2.218(6)	2.145(5)	2.144(4)	2.117(4)	2.097(4)	2.150(3)	2.262(6)
Cu1-N4	2.103(5)	2.088(4)	2.081(4)	2.089(3)	2.161(4)	2.096(4)	2.073(5)
Cu1-N3	2.110(5)	2.139(5)	2.168(4)	2.197(4)	2.162(4)	2.156(4)	2.061(5)
Cu2-N8	2.08(2)	2.085(4)	2.083(4)	2.101(3)	2.072(4)	2.070(4)	2.061(7)
Cu2-N7	2.092(5)	2.090(4)	2.104(4)	2.085(4)	2.088(4)	2.068(4)	2.087(5)
Cu2-N6	2.271(6)	2.187(5)	2.207(4)	2.224(4)	2.258(4)	2.237(4)	2.147(6)
C37-O13-Cu1	145.0(5)	121.5(5)	124.3(3)	122.7(3)	124.2(3)	123.3(3)	
C37-O14-Cu2	141.2(7)	150.2(5)	159.1(4)	160.6(4)	159.8(4)	158.3(4)	
Cu1···Cu2	6.008	5.641	5.739	5.776	5.746	5.724	6.521
τ(Cu1/Cu2)	0.81/0.60	0.66/0.32	0.80/0.50	0.73/0.50	0.79/0.42	0.78/0.41	0.42/0.75

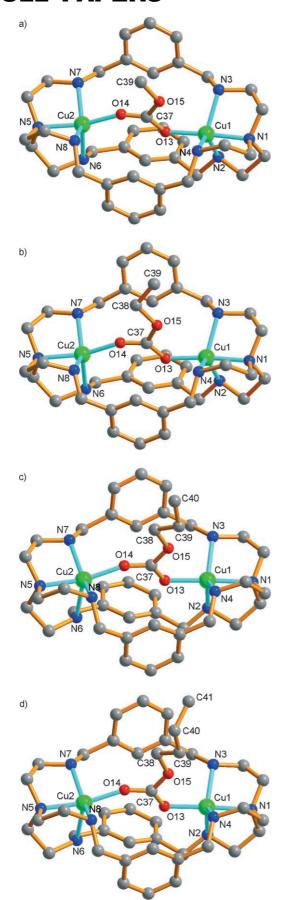


Figure 2. Structures of the cryptate cations in a) 3, b) 4, c) 5, and d) 6.

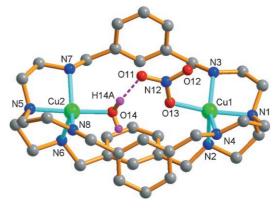


Figure 3. Structure of [Cu₂L¹(NO₃)(H₂O)]³⁺ in 10.

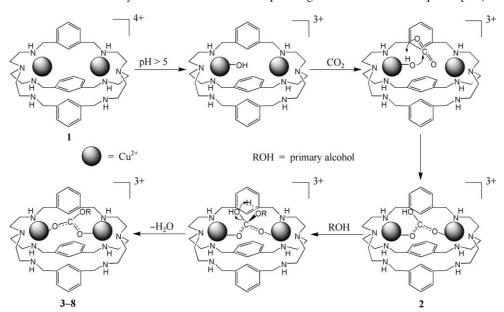
CO, Fixation and Transformation: IR and ESI Mass Spectra

The existence of the bicarbonate bridging ligand in **2**, and the μ -O₂COR⁻ bridging ligands in **3–8**, are further proved by their IR and electrospray ionization (ESI) mass spectra. The IR spectrum of **2** shows bicarbonate-related vibrations at 1553 and 1331 cm⁻¹ for **2**·CH₃CN, and at 1551 and 1405 cm⁻¹ for **2**·2CH₃CN.^[16] All the μ -O₂COR⁻-bridged complexes of **3–8** showed two stretching vibration bands of the OCO₂ groups at around 1630 and 1330 cm⁻¹.^[7,8,12]

The fixation of atmospheric CO₂ by 1 was confirmed by ESI-MS (see Supporting Information, Figure S1). Initially, 1 acetonitrile showed four species: [Cu₂L¹-H]³⁺, $[Cu_2L^1-2H]^{2+}$, $[Cu_2L^1-3H]^+$, and $[Cu_2L^1(ClO_4)-2H]^+$. After the solution was kept at room temperature in an open vessel for a few hours, these four peaks almost disappeared, and three new species corresponding to $[Cu_2L^1(HCO_3)]^{3+}$, $[Cu_2L^1(HCO_3)(ClO_4)]^{2+}$, and $[Cu_2L^1(CO_3)]^{2+}$ were observed. However, when the solution was left under nitrogen atmosphere for 7 days, only the new [Cu₂L¹(OH)-H]²⁺ was observed, and no species corresponding to HCO₃⁻- or CO₃²-bridged dicopper cryptates were present. This clearly indicates that the bicarbonate anion in 2 comes from the hydration of atmospheric CO₂. Furthermore, in the presence of more strongly coordinating anions such as acetate and NO₃-, Cu^{II} reacted with L¹ in air to give the acetate-bridged dicopper complex 9 and the NO₃-coordinated dicopper complex 10, respectively, instead of the bicarbonate-bridged complex. This indicates that CO₂ fixation is prohibited when the axial positions of Cu^{II} are occupied by strongly coordinating anions.

For **2**-CH₃CN and **2**-2CH₃CN, the ESI mass spectra show the existence of both carbonate and bicarbonate species with substantial intensity. The appearance of carbonate is probably due to the removal of protons during the ionization process. All monoalkylcarbonato species gave rise to distinct peaks corresponding to $[Cu_2L^1(\mu\text{-}O_2COR)(ClO_4)_2]^+$, $[Cu_2L^1(\mu\text{-}O_2COR)ClO_4]^{2+}$, and $[Cu_2L^1(\mu\text{-}O_2COR)]^{3+}$, respectively, which supports the monoalkylcarbonato-bridged dicopper structures. Furthermore, when **2** reacted with CD_3OH instead of CH_3OH , the peaks corresponding to $[Cu_2L^1(\mu\text{-}O_2COR)(ClO_4)_2]^+$ and $[Cu_2L^1(\mu\text{-}O_2COR)ClO_4]^{2+}$

shifted from m/z = 999 and 450, respectively, in methanol to m/z = 1004 and 452 in $[D_4]$ methanol. (For **3** and **3a** ($[Cu_2L^1(\mu\text{-}O_2COCD_3)](ClO_4)_3$), the trivalent species were not observed.) This clearly indicates that transformation from HCO_3^- to $ROCO_2^-$ takes place in primary alcohols. However, no transforming reaction occurred in the secondary alcohol *i*PrOH (see Supporting Information, Figure S2). This could be attributed to the limited space in the cryptate, which allows the formation of monoalkylcarbonates of primary alcohols, but not higher alcohols, between two copper atoms.


DFT Calculations

The geometry-optimized structural parameters are in reasonable agreement with the structures determined by X-ray crystallography (see Supporting Information, Table S2). The slight discrepancies are probably the consequence of crystalpacking forces and the presence of counteranions and solvent molecules in the solid-state structures. All the cations of 2-6 showed similar frontier molecular orbitals, in which the HOMOs and LUMOs are mainly from L1 and from both L¹ and copper, respectively (see Supporting Information, Figure S4 and Table S3); the μ -O₂COH⁻ and μ -O₂COR⁻ bridges showed little contribution to the frontier molecular orbitals. This implies that the esterification of µ-O₂COH⁻ does not significantly modify the stability of **2–6**. On the basis of the calculated frontier-molecular-orbital energies (see Supporting Information, Tables S3 and S4), all the cations of 2-6 showed similar HOMO and LUMO orbital energies, which also indicates that these cations have similar stability. During the optimization, the coordination mode of $\mu\text{-}O_2COH^-$ in $\boldsymbol{2}$ changed from symmetrical to asymmetrical, whereas the μ -O₂COR⁻ anions in 3-6 retained the asymmetrical mode. This suggests that the asymmetrical mode is more stable than the symmetrical.

The Mulliken and natural electron charges on copper, L¹, μ-O₂COH⁻/μ-O₂COR⁻ bridges, the carbon atoms in the bridges of the cations of 2-6, and the uncoordinated O₂COH⁻/O₂COR⁻ ions are listed in the Supporting Information (Table S5). The Mulliken and net natural electron charges of the μ-O₂COH⁻ bridge in [Cu₂L¹(μ-O₂COH)]³⁺ are -0.47 (Mulliken population analysis; MPA) and -0.85(natural population analysis; NPA), which indicates very significant electron donation from the μ-O₂COH⁻ group to the d orbitals of Cu^{II} after formation of μ-O₂COH⁻-bridged 2. The electronic charge of the carbon atom in the μ-O₂COH⁻ bridge thus becomes much more positive (MPA=0.86, NPA = 1.09) compared with that in the uncoordinated O_2COH^- group (MPA=0.62, NPA=0.98). This indicates that the O₂COH⁻ anion is activated after coordination to Cu^{II}, that is, the electrophilic reactivity of the carbon atom in the μ-O₂COH⁻ bridge is increased through ligand coordination with CuII, so it is more susceptible to nucleophilic attack by the solvent.

Mechanism of CO₂ Fixation and Esterification

Although it is well-known that the fixation of CO_2 by metal complexes in basic solution occurs via hydroxo species to afford metal carbonate derivatives, ^[5,7,17] the fixation of CO_2 in acidic media is rather unusual, and only a few such examples have been reported so far. ^[8a] We have now found that $[Cu_2L^1](ClO_4)_4$ can easily fix atmospheric CO_2 in the form of the bicarbonate in neutral or even weakly acidic media. CO_2 fixation by $[Cu_2L^1]^{4+}$ may follow a mechanism analogous to that for bicarbonate formation. As shown in Scheme 2, the initially coordinated water molecule loses a proton to give the species $[Cu_2(OH)L^1]^{3+}$. OH^- then attacks the carbon atom in CO_2 to form the μ- O_2COH^- -bridged cryptate $[Cu_2L^1(\mu-O_2COH)]^{3+}$ (2). Interestingly, the corresponding mononuclear complex $[Cu(tren)(H_2O)](ClO_4)_2$

Scheme 2. Proposed mechanism for CO₂ fixation and esterification by [Cu₂L¹]⁴⁺.

(tren=tris(2-aminoethyl)amine) does not take up atmospheric CO₂, and [{Cu(tren)}₂(μ -O₂COH)](ClO₄)₃ could only be obtained by adding HCO₃⁻ in acidic medium. The ability of [Cu₂L¹]⁴⁺ to fix atmospheric CO₂ in weakly acidic medium may be due to the extremely low p K_a value of the [Cu₂L¹(OH)]³⁺ species (4.58^[11]), which enables it to take up CO₂ at pH>5.

Nelson and co-workers^[12] presumed that the generation of O₂COCH₃⁻ by [Cu₂L¹]⁴⁺ in methanol may occur through CO₂ insertion into the M-OCH₃ bond. If alkylcarbonate formation depended on this event, the mononuclear complex [CuL³]²⁺ in methanol should easily generate the complex [CuL³(O₂COCH₃)]⁺. However, ESI-MS revealed that the corresponding mononuclear complexes [Cu(tren)(H₂O)]- $(ClO_4)_2$ and $[CuL^3(H_2O)](ClO_4)_2$ in CH_3OH/CH_3CN (1:1) did not generate the methylcarbonate species, even when NaOCH3 was added and the solution left in the open for 3 days (see Supporting Information, Figure S3). This suggests that alkylcarbonate formation does not result from CO₂ insertion into the M-OCH₃ bond. In fact, alkylcarbonate formation may involve two steps: the formation of the intermediate [Cu₂L¹(μ-O₂COH)]³⁺, and its esterification with primary alcohols. Furthermore, μ-O₂COH⁻ formation is necessary for esterification, as only synchronous activation by two Cu^{II} atoms on μ-O₂COH⁻ will lead to increased positive charge on the carbon atom in the μ-O₂COH⁻ bridge, so that electrophilic attack by the primary alcohol can take place. On the basis of our ESI-MS results and DFT calculations, there is no doubt that the esterification of 2 proceeds via tetrahedral intermediates as shown in Scheme 2. In the process of esterification, the electrophilic carbon atom of µ-O₂COH⁻ in 2 is attacked by the primary alcohol to form a tetrahedral intermediate, which is then converted into the u-O₂COR⁻-bridged cryptates [Cu₂L¹(μ-O₂COR)]³⁺ by elimination of water.

Reactivity Controlled by Ligand Conformation

Although L^1 and L^2 have similar structures, they show different reactivity. The dinuclear complex $[Cu_2L^1]^{4+}$ dissolved in acetonitrile easily absorbed atmospheric CO_2 in an open vessel to form the μ - O_2COH^- -bridged cryptate $[Cu_2L^1(\mu-O_2COH)]^{3+}$ within a few minutes, as monitored by UV/V is spectroscopy (see Supporting Information, Figure S5). $[Cu_2L^1(\mu-O_2COH)]^{3+}$ does not cleave the C-C bond of acetonitrile as the axial positions of both Cu^{II} ions are occupied by the μ - O_2COH^- bridge. On the contrary, $[Cu_2L^2]^{4+}$ in acetonitrile does not take up atmospheric CO_2 , so the axial sites can be occupied by acetonitrile; thus, $[Cu_2L^2]^{4+}$ can cleave the C-C bond of acetonitrile to form the cyanobridged complex $[Cu_2L^2(CN)]^{3+}$ and methanol.

As shown in Figure 1b, the three phenyl rings of L^2 adopt a rigid triangular conformation, and the conformational conversion from stable triangle to form A or B goes through a large energy barrier. As a consequence, it is difficult for large molecules or anions to enter the binding cavity of $[Cu_2L^2]^{4+}$, hence it does not fix atmospheric CO_2 . The only

exception is [Cu₂L²(im)](ClO₄)₃ (im=imidazolate),^[19] in which L² adopts the conformation form A. In this complex, the imidazolate ligand is located between two parallel phenyl rings to form a sandwichlike structure with strong $\pi \cdots \pi$ interactions between the imidazolate and the two phenyl rings. The strong $\pi \cdot \cdot \cdot \pi$ interaction means that L² can overcome the energy barrier of conversion from triangle to form A to form the stable complex $[Cu_2L^2(im)](ClO_4)_3$. The conformation of L¹ is more flexible than that of L²; two of three phenyl rings in L¹ can rotate to some degree to generate a larger window in the binding cavity (Figure 1b), which can accommodate planar O₂COH⁻ and O₂COR⁻ groups. Therefore, $[Cu_2L^1]^{4+}$ can take up atmospheric CO₂ to form 2 and transform it into 3-8 in the presence of primary alcohols. For secondary alcohols such as iPrOH, no esterification occurs due to the limited cavity space. This sterically induced selective esterification may be potentially useful for the synthesis of symmetric or unsymmetric carbonate esters.

Conclusions

In summary, a bicarbonate-bridged and a series of monoalkylcarbonate-bridged cryptates have been synthesized. $[Cu_2L^1](ClO_4)_4$ (1) absorbs atmospheric CO_2 easily to form the μ-O₂COH⁻-bridged complex 2 even under acidic conditions because of the extremely low pK_a value of the intermediate [Cu₂L¹(OH)]³⁺; this process follows the mechanism of bicarbonate formation. The coordination of O₂COH⁻ to two CuII ions activates its carboxy carbon atom so that it is more easily attacked by primary alcohols to generate monoalkylcarbonate-bridged complexes 3-8 via tetrahedral intermediates. Notably, different metal ions may also play a crucial role in CO₂ fixation and transformation. Atmospheric CO₂ fixation and transformation by [Cu₂L¹]⁴⁺ may potentially be used for the preparation of valuable carbon-containing compounds such as symmetrical and unsymmetric carbonate esters. Optimization efforts directed along these lines are currently ongoing in our group.

Experimental Section

General

Ligand L³ and its mononuclear complex [CuL³(H₂O)](ClO₄)₂ were prepared by literature methods. [20] All other solvents and chemicals were commercially available and used without further purification. Elemental analysis was performed with an Elementar Vario EL elemental analyzer. IR spectra were recorded in the 4000–400-cm⁻¹ region at room temperature by using KBr pellets and a Bruker EQUINOX 55 spectrometer. ESI mass spectra were recorded on a Thermo Finnigan LCQ DECA XP iontrap mass spectrometer. pH values were measured with an HANNA pH213 meter with an HI1330 electrode. UV/Vis spectra were recorded on a Shimadzu UV-3150 spectrophotometer.

Caution: Perchlorate salts of metal complexes with organic ligands are potentially explosive and should be handled with great care.

Syntheses

- L1: Prepared by a modified literature method. [11] A solution of tris(2-aminoethyl)amine (1.51 g, 0.0103 mol) in CH₃OH (150 mL) was added dropwise to a stirred solution of benzene-1,3-dicarboxaldehyde (2.08 g, 0.0155 mol) in CH₃OH (300 mL) over 1 h. After the mixture was stirred at room temperature for 24 h, the resulting yellowish solution was reduced to 100 mL under reduced pressure. The solution was cooled to 0 °C on an ice bath, and $NaBH_4$ (4.30 g, 0.114 mol) was then added. The suspension was stirred at room temperature for 2 h, then heated to 50°C and stirred at this temperature for an additional 20 h to ensure that the reduction was complete. The solvent was removed under reduced pressure, and water (50 mL) was added. The product was extracted with toluene. The organic phase was dried over MgSO4 and filtered. Evaporation of the filtrate under reduced pressure vielded a vellowish oil. It was recrystallized from toluene to give a white solid (2.16 g, 70%). MS (ESI): m/z calcd for $C_{36}H_{54}N_8$: 599.9 [HL¹]+, 300.4 [H₂L¹]²⁺; found: 600.2, 300.5; elemental analysis: calcd (%) for $C_{36}H_{54}N_8\cdot 0.5H_2O$ ($L^1\cdot 0.5H_2O$): C 71.13, H 9.12, N 18.43; found: C 70.74, H 9.32, N 18.02. L1 easily absorbs atmospheric CO₂ to form [H₂L¹]CO₃. To obtain the CO₂-free ligand, the dry product L¹ was dissolved in a small amount of acetone, the solution was kept on an ice-bath, and excess HClO₄ was added dropwise to give a white precipitate. After the mixture was stirred for 15 min, the precipitate was filtered, washed with a small amount of acetone and diethyl ether, and then dried under vacuum to give the white solid L¹·8HClO₄ (4.34 g, 86%). MS (ESI): m/z calcd for $C_{36}H_{54}N_8HClO_4$: 350.7 $[H_3L^1ClO_4]^{2+}$, 300.4 $[H_2L^1]^{2+}$; found: 349.4, 300.5; elemental analysis: calcd (%) for $C_{36}H_{78}N_8Cl_8O_{40}$ (L¹·8HClO₄·8H₂O): C 27.96, H 5.08, N 7.24; found: C 28.32, H 4.82, N 7.31.
- 1: This reaction was carried out under nitrogen atmosphere. A solution of $\text{Cu}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$ (2.10 g, 5.67 mmol) in anhydrous ethanol (12 mL) was added to a solution of $\text{L}^1\text{-8}\text{HClO}_4$ (3.00 g, 2.14 mmol) and NaOH (0.67 g, 16.80 mmol) in anhydrous ethanol (250 mL). The mixture was stirred at room temperature for 15 min, and the blue precipitate formed was filtered, washed with ethanol and diethyl ether, and dried under vacuum to give 1 as a blue powder (1.74 g, 75%). IR (KBr): $\bar{\nu}=1629$, $1450~\text{cm}^{-1}$ (Ar); MS (FAB): m/z calcd for $[\text{Cu}_2\text{L}^1](\text{ClO}_4)_4$: 823.4 $[\text{Cu}_2\text{L}^1-(\text{ClO}_4)-2\text{H}]^+$; found: 823.0; elemental analysis: calcd (%) for $\text{C}_{36}\text{H}_{70}\text{N}_8\text{Cu}_2\text{Cl}_4\text{O}_24(\text{1-8}\text{H}_2\text{O})$: C 34.10, H 5.56, N 8.84; found: C 34.46, H 5.22, N 9.03.
- 2: The blue powder of **1** (1.00 g, 0.89 mmol) was dissolved in acetonitrile (20 mL) to give an acidic solution (an accurate pH value could not be obtained due to fluctuations). The solution was evaporated slowly in an open vessel at room temperature. After about 6 days, blue crystals of **2**·CH₃CN were obtained (0.69 g, 69 %); the remaining solution was still acidic. IR (KBr): \bar{v} =1553, 1331 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂(CO₃H)L¹](ClO₄)₃: 885.4 [Cu₂(CO₃H)L¹(ClO₄)₂]⁺, 443.2 [Cu₂(CO₃H)L¹(ClO₄)]²⁺, 393.0 [Cu₂(CO₃L¹]²⁺; found: 885.0, 441.6, 392.1; elemental analysis: calcd (%) for C₃₇H₆₁N₈Cu₂Cl₃O₁₈ (**2**·3H₂O): C 39.00, H 5.40, N 9.83; found:C 38.96, H 5.56, N 9.83 (in all cases, the crystals were dried under vacuum before elemental analysis).

The final pH values after crystallization of all the other cryptates 3–8 from acetonitrile were also in the acidic range. As the measurement of pH in acetonitrile might not be accurate, a solution of $Cu(ClO_4)_2$ -6H₂O and L^1 (2:1) in water was exposed to the atmosphere; the pH of this solution was 5.3. ESI-MS indicates that 2 was also formed in this solution, with a final pH value of 5.1. Thus, there is no doubt that fixing of atmospheric CO_2 can take place under acidic conditions.

3: The blue powder of **2** (0.50 g, 0.46 mmol) was dissolved in acetonitrile (10 mL) and methanol (8 mL). The solution was evaporated slowly at room temperature. After about one week, blue crystals of **3**·2CH₃CN were obtained (0.41 g, 75 %). IR (KBr): $\tilde{\nu}$ =1633, 1348 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂(CO₃CH₃)L¹](ClO₄)₃: 999.9 [Cu₂(CO₃CH₃)L¹-(ClO₄)₂]⁺, 450.3 [Cu₂(CO₃CH₃)L¹(ClO₄)]²⁺; found: 998.9, 450.1; elemental analysis: calcd (%) for C₃₈H₆₃N₈Cu₂Cl₃O₁₈ (**3**·3H₂O): C 39.57, H 5.51, N 9.72; found: C 39.32, H 5.33, N 9.91.

Alternative method for 2 and 3: A solution of L^1 -8HClO₄ (0.50 g, 0.36 mmol) and NaOH (0.11 g, 2.8 mmol) in methanol (35 mL) was

- added dropwise to a solution of Cu(ClO₄)₂·6H₂O (0.35 g, 0.94 mmol) in methanol (2 mL) to obtain a pH value of 5-6. After the mixture was stirred at room temperature for 15 min, the blue precipitate formed was filtered and washed with methanol. The precipitate contained a mixture of 2 and 3 (as indicated by ESI-MS). The precipitate was then dissolved in acetonitrile (5 mL), and the solution was filtered. The filtrate was evaporated slowly at room temperature. After about 5 days, blue crystals of 2.2CH₃CN (0.09 g, \approx 22 %) and 3.4.5CH₃CN·0.5H₂O (0.06 g, 13 %) were obtained from the solution (yields based on the isolated crystals; there was still a large amount of product in solution). 2: IR (KBr): $\tilde{\nu}$ = 1551, 1405 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for $[Cu_2(CO_3H)L^1](ClO_4)_3$: 885.4 $[Cu_2(CO_3H)L^1(ClO_4)_2]^+$, 443.2 $[Cu_2(CO_3H)L^1(ClO_4)]^{2+}$, 393.0 $[Cu_2(CO_3H)L^1(ClO_4)]^{2+}$ (CO₃)L¹]²⁺; found: 885.1, 442.9, 392.2; elemental analysis: calcd (%) for $C_{37}H_{61}N_8Cu_2Cl_3O_{18}$ (2.3 H_2O): C 39.00, H 5.40, N 9.83; found: C 39.32, H 5.68, N 10.07. 3: elemental analysis: calcd (%) for $C_{38}H_{62}N_8Cu_2Cl_3O_{17.5}$ (3.2.5H₂O): C 39.90, H 5.42, N 9.79; found: C 39.99, H 5.72, N 9.73.
- **3a**: The blue powder of **2** (0.100 g, 0.092 mmol) was dissolved in acetonitrile (2 mL) and [D₄]methanol (1.5 mL). The solution was allowed to evaporate slowly in air at room temperature. After about 3 days, blue crystals of **3a** were obtained (0.076 g, 75%). IR (KBr): \bar{v} =1635, 1377 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂(CO₃CD₃)L¹](ClO₄)₃: 1002.9 [Cu₂(CO₃CD₃)L¹(ClO₄)₂]⁺, 451.7 [Cu₂(CO₃CD₃)L¹(ClO₄)]²⁺; found: 1004.0, 452.0; elemental analysis: calcd (%) for C₃₈H₆₄D₃N₈Cu₂Cl₃O₂₀ (**3a·**5H₂O): C 38.28, H 5.91, N 9.40; found: C 38.01, H 5.58, N 9.34.
- **4-8**: The blue powder of **2** was dissolved in acetonitrile and the corresponding alcohol. The solution was allowed to evaporate slowly in air at room temperature to give blue crystals. Yields: **4**: 0.05 g, 47%; **5**: 0.04 g, 40%; **6**: 0.07 g, 70%; **7**: 0.06 g, 55%; **8**: 0.07 g, 72%.
- **4**: IR (KBr): $\tilde{v} = 1630$, 1325 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂ (CO₂C₂H₅)L¹](ClO₄)₃: 1013.9 [Cu₂(CO₃C₂H₅)L¹(ClO₄)₂]⁺, 457.2 [Cu₂ (CO₃C₂H₅)L¹(ClO₄)]²⁺, 271.7 [Cu₂(CO₃C₂H₅)L¹]³⁺; found: 1013.0, 457.1, 271.1; elemental analysis: calcd (%) for C₃₉H₆₅N₈Cu₂Cl₃O₁₈ (**4**·3H₂O): C 40.12, H 5.61, N 9.60; found: C 39.80, H 5.61, N 9.80.
- **5**: IR (KBr): $\tilde{v} = 1638$, 1326 cm^{-1} (OCO₂); MS (ESI): m/z calcd for [Cu₂ (CO₂C₃H₇)L¹](ClO₄)₃: 1028.0 [Cu₂(CO₃C₃H₇)L¹(ClO₄)₂]⁺, 464.3 [Cu₂ (CO₃C₃H₇)L¹(ClO₄)]²⁺, 276.4 [Cu₂(CO₃C₃H₇)L¹]³⁺; found: 1027.0, 464.1, 275.9; elemental analysis: calcd (%) for C₄₀H₇₁N₈Cu₂Cl₃O₂₀ (**5**·5H₂O): C 41.94, H 5.54, N 9.84; found: C 41.92, H 5.47, N 9.78.
- **6**: IR (KBr): $\tilde{v} = 1634$, 1329 cm^{-1} (OCO₂); MS (ESI): m/z calcd for [Cu₂ (CO₂C₄H₉)L¹](ClO₄)₃: 1042.0 [Cu₂(CO₃C₄H₉)L¹(ClO₄)₂]⁺, 471.3 [Cu₂ (CO₃C₄H₉)L¹(ClO₄)]²⁺, 281.0 [Cu₂(CO₃C₄H₉)L¹]³⁺; found: 1040.9, 471.1, 280.4; elemental analysis: calcd (%) for C₄₃H₆₆N₉Cu₂Cl₃O₁₅ (**6**·CH₃CN): C 43.68, H 5.63, N 10.66; found: C 43.12, H 5.59, N 10.72.
- 7: IR (KBr): $\tilde{\nu}=1638$, 1403, 1323 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂(CO₂C₅H₁₁)L¹](ClO₄)₃: 1056.0 [Cu₂(CO₃C₅H₁₁)L¹(ClO₄)₂]⁺, 478.3 [Cu₂(CO₃C₅H₁₁)L¹(ClO₄)]²⁺, 285.7 [Cu₂(CO₃C₅H₁₁)L¹]³⁺; found: 1055.1, 478.1, 285.9; elemental analysis: calcd (%) for C₄₂H₇₅N₈Cu₂Cl₃O₂₀ (**7·**5H₂O): C 40.50, H 6.07, N 9.00; found: C 40.03, H 6.07, N 9.53.
- **8**: IR (KBr): $\tilde{v} = 1642$, 1403, 1323 cm⁻¹ (OCO₂); MS (ESI): m/z calcd for [Cu₂(CO₃CH₂CH₂OH)L¹](ClO₄)₃: 1029.9 [Cu₂(CO₃C₂H₄OH)L¹(ClO₄)₂]⁺, 465.2 [Cu₂(CO₃C₂H₄OH)L¹(ClO₄)]²⁺, 277.0 [Cu₂(CO₃C₂H₄OH)L¹]³⁺; found: 1029.0, 465.1, 276.5; elemental analysis: calcd (%) for C₃₉H₆₁N₈Cu₂Cl₃O₁₇ (**8**·H₂O): C 40.82, H 5.36, N 9.77; found: C 40.45, H 5.42. N 9.99
- 9: A solution of Cu(ClO₄)₂·6H₂O (0.105 g, 0.30 mmol) in methanol (5 mL) and acetonitrile (5 mL) was added to a solution of L¹ (0.087 g, 0.15 mmol) in methanol (5 mL) . The solution was stirred for 5 min, then a solution of sodium acetate (0.018 g, 0.22 mmol) in methanol (5 mL) was added. The resulting solution was evaporated slowly at room temperature. After about 2 days, blue crystals of **9** were obtained (0.084 g, 52 %). IR (KBr): $\bar{\nu}$ =1611, 1578, 1281 cm⁻¹ (OCO); MS (ESI): m/z calcd for [Cu₂(CO₂CH₃)L¹](ClO₄)₃: 983.9 [Cu₂(CO₂CH₃)L¹(ClO₄)₂]⁺, 442.2 [Cu₂(CO₂CH₃)L¹(ClO₄)]²⁺, 261.7 [Cu₂(CO₂CH₃)L¹(ClO₄)]³⁺; found: 982.8, 441.9, 261.8; elemental analysis: calcd (%) for C₃₈H₅₅N₈Cu₂Cl₃O₁₅ (**9**·H₂O): C 41.44, H 5.40, N 10.17; found: C 41.32, H 5.65, N 10.13.

10: A solution of L¹ (0.15 g, 0.25 mmol) in methanol (3 mL) and a solution of Na₂SO₄ (0.035 g, 0.25 mmol) in water (0.5 mL) was added to a solution of Cu(NO₃)₂·3H₂O (0.12 g, 0.50 mmol) in methanol (3 mL). After the mixture was stirred at room temperature for 18 h, the blue precipitate formed was filtered out, and the filtrate was evaporated in air for 8 days to give blue crystals of 10·2H₂O (0.05 g, 18%). IR (KBr): $\tilde{\nu}$ =1384, 1017 cm⁻¹ (NO₃⁻); elemental analysis: calcd (%) for C₃₇H₆₃N₁₂Cu₂O_{15.5} (10·2.5H₂O·CH₃OH): C 42.28, H 6.04, N 15.99; found: C 42.04, H 6.16, N 16.12.

Crystal-Structure Determination

Single-crystal data for 2-2CH₃CN, 3-2CH₃CN, 3-4.5CH₃CN-0.5H₂O, 4·2CH₃CN, 5·CH₃CN, 6·CH₃CN, and 10·2H₂O were collected at 293(2) K on a Bruker Smart 1000 CCD diffractometer with $Mo_{K\alpha}$ radiation ($\lambda\!=\!$ 0.71073 Å). All empirical absorption corrections were applied by using the SADABS program.^[21] The structures were solved with direct methods, which yielded the positions of all non-hydrogen atoms. These were first refined isotropically and then anisotropically. All hydrogen atoms (except those bound to water molecules) were placed in calculated positions with fixed isotropic thermal parameters and included in structurefactor calculations in the final stage of full-matrix least-squares refinement. The carbonate monoester groups in 3-2CH3CN, 4-2CH3CN, and 6-CH₃CN, as well as the ClO₄⁻ anions in 5-CH₃CN and 6-CH₃CN were found to be disordered. All calculations were performed with the SHELXTL-97 system of computer programs.^[22] The crystallographic data are summarized in Table 1. Selected bond lengths and angles are listed in Table 2. CCDC-635603-635609 (2-2CH₃CN, 3-2CH₃CN, 3-4.5CH₃CN-0.5H₂O, 4·2CH₃CN, 5·CH₃CN, 6·CH₃CN, and 10·2H₂O, respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at http://www.ccdc.cam.ac.uk/data_request/cif.

Computational Details

DFT calculations and geometry optimizations were performed with the Gaussian 03 package^[23] by using the B3LYP functional,^[24] the 6-31G(d) basis set, and default settings for the convergence criteria. On the basis of the corresponding crystal structures, the structure of the cations of 2-CH₃CN, 3-2CH₃CN, 4-2CH₃CN, 5-CH₃CN, and 6-CH₃CN were fully optimized on isolated entities in vacuum without any symmetry constraints. Wavefunction stability calculations were performed to confirm that the calculated wavefunctions corresponded to those of the ground state. Atomic charges were calculated by using MPA^[25] and NPA^[26] as implemented in Gaussian 03. GaussSum^[27] was used to calculate the contributions from groups of atoms to each molecular orbital. Graphical representations of the orbitals were produced by the gOpenMol^[28] graphics program. For reasons of computational expense due to the large size of our systems, frequency calculations were not carried out on the minima. The optimized Cartesian coordinates are given in Table S1 of the Supporting Information. Selected bond lengths and angles for the optimized geometries of the cations of 2-6 are summarized in Table S2. The orbital energies (ε) and composition (in terms of Cu, L¹, and the bridges) of the frontier molecular orbitals are listed in Table S3.

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars of China (20625103), the NSFC (20371051), and the NSF of Guangdong Province (04205405).

- [1] a) K. Caldeira, A. K. Jain, M. I. Hoffert, *Science* **2003**, 299, 2052–2054; b) D. S. Jenkinson, D. E. Adams, A. Wild, *Nature* **1991**, 351, 304–306.
- [2] a) J. R. Bolton, Science 1978, 202, 705–711; b) R. Eisenberg, D. G. Nocera, Inorg. Chem. 2005, 44, 6799–6801.
- [3] a) D. A. Palmer, R. van Eldik, Chem. Rev. 1983, 83, 651-731;
 b) D. H. Gibson, Chem. Rev. 1996, 96, 2063-2095;
 c) W. Leitner,

- Coord. Chem. Rev. 1996, 153, 257-284; d) X. L. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27-59.
- [4] a) Z. W. Mao, G. Liehr, R. van Eldik, J. Am. Chem. Soc. 2000, 122, 4839–4840; b) J. C. Kim, J. H. Cho, H. Kim, A. J. Lough, Chem. Commun. 2004, 1796–1797.
- [5] a) L. Y. Kong, Z. H. Zhang, H. F. Zhu, H. Kawaguchi, T. Okamura, M. Doi, Q. Chu, W. Y. Sun, N. Ueyama, Angew. Chem. 2005, 117, 4426-4429; Angew. Chem. Int. Ed. 2005, 44, 4352-4355; b) L. Y. Kong, H. F. Zhu, Y. Q. Huang, H. Kawaguchi, X. H. Lu, Y. Song, G. X. Liu, W. Y. Sun, N. Ueyama, Inorg. Chem. 2006, 45, 8098-8107; c) B. Verdejo, J. Aguilar, E. G. Espana, P. Gavina, J. Latorre, C. Soriano, J. M. Llinares, A. Domenech, Inorg. Chem. 2006, 45, 3803-3815; d) C. Bazzicalupi, A. Bencini, A. Bencini, A. Bianchi, F. Corana, V. Fusi, C. Giorgi, P. Paoli, P. Paoletti, B. Valtancoli, C. Zanchini, Inorg. Chem. 1996, 35, 5540-5548; e) A. Escuer, F. A. Mautner, E. Penalba, R. Vicente, Inorg. Chem. 1998, 37, 4190-4196; f) N. Kitajima, S. Hikichi, M. Tanaka, Y. Moro-oka, J. Am. Chem. Soc. 1993, 115, 5496-5508.
- [6] a) M. H. Chisholm, F. A. Cotton, M. W. Extine, W. W. Reichert, J. Am. Chem. Soc. 1978, 100, 1727–1734; b) T. Tsuda, S. Sanada, K. Ueda, T. Saegusa, Inorg. Chem. 1976, 15, 2329–2332.
- [7] a) M. Kato, T. Ito, *Inorg. Chem.* 1985, 24, 504–508; b) M. Kato, T. Ito, *Inorg. Chem.* 1985, 24, 509–514; c) M. Kato, T. Ito, *Bull. Chem. Soc. Jpn.* 1986, 59, 285–294.
- [8] a) B. Kersting, Angew. Chem. 2001, 113, 4109-4112; Angew. Chem.
 Int. Ed. 2001, 40, 3987-3990; b) S. Derossi, A. D. Bond, C. J. McKenzie, J. Nelson, Acta Crystallogr. Sect. E 2005, 61, m1379-m1382.
- [9] a) W. E. Buhro, M. H. Chisholm, J. D. Martin, J. C. Huffmann, K. Folting, W. E. Streib, J. Am. Chem. Soc. 1989, 111, 8149–8156; b) E. García-España, P. Gaviña, J. Latorre, C. Soriano, B. Verdejo, J. Am. Chem. Soc. 2004, 126, 5082–5083; c) D. Dell'Amico Belli, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, Chem. Rev. 2003, 103, 3857–3897.
- [10] a) V. McKee, J. Nelson, R. M. Town, *Chem. Soc. Rev.* **2003**, *32*, 309–325; b) M. A. Hossain, P. Morehouse, D. Powell, K. Bowman-James, *Inorg. Chem.* **2005**, *44*, 2143–2149.
- [11] R. Menif, J. Reibenspies, A. E. Martell, *Inorg. Chem.* 1991, 30, 3446–3454.
- [12] Y. Dussart, C. Harding, P. Dalgaard, C. McKenzie, R. Kadirvelraj, V. McKee, J. Nelson, J. Chem. Soc. Dalton Trans. 2002, 1704–1713.
- [13] a) J. L. Pierre, P. Chautemps, S. Refaif, C. Beguin, A. E. Marzouki, G. Serratrice, E. Saint-Aman, P. Rey, J. Am. Chem. Soc. 1995, 117, 1965–1973; b) C. J. Harding, V. McKee, J. Nelson, Q. Lu, J. Chem. Soc. Chem. Commun. 1993, 1768–1770; c) C. J. Harding, F. E. Mabbs, E. J. L. MacInnes, V. McKee, J. Nelson, J. Chem. Soc. Dalton Trans. 1996, 3227–3230; d) A. Escuer, C. J. Harding, Y. Dussart, J. Nelson, V. McKee, R. Vicente, J. Chem. Soc. Dalton Trans. 1999, 223–228; e) A. D. Bond, S. Derossi, C. J. Harding, E. J. L. McInnes, V. McKee, C. J. McKenzie, J. Nelson, Dalton Trans. 2005, 2403–2409.
- [14] T. Lu, X. Zhuang, Y. Li, S. Chen, J. Am. Chem. Soc. 2004, 126, 4760–4761.
- [15] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349–1356.
- [16] M. Aresta, D. Ballivet-Tkatchenko, D. B. Dell'Amico, M. C. Bonnet, D. Boschi, F. Calderrazzo, F. Faure, L. Labella, F. Marchetti, *Chem. Commun.* 2000, 1099–1100.
- [17] F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999, p. 1225.
- [18] Z. W. Mao, G. Liehr, R. van Eldik, J. Chem. Soc. Dalton Trans. 2001, 1593–1600.
- [19] X.-M. Zhuang, T.-B. Lu, S. Chen, Inorg. Chim. Acta 2005, 358, 2129–2134.
- [20] a) M. A. Hossain, J. A. Liljegren, D. Powell, K. Bowman-James, Inorg. Chem. 2004, 43, 3751–3755; b) M. Schatz, M. Becker, O. Walter, G. Liehr, S. Schindler, Inorg. Chim. Acta 2001, 324, 173– 179.

- [21] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen (Germany), 1996.
- [22] G. M. Sheldrick, SHELXTL-97, Program for Crystal Structure Solution and Refinement, University of Göttingen, Göttingen (Germany), 1997.
- [23] Gaussian 03 (Revision B.02), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
- B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA (USA), 2003.
- [24] a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648–5652; b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785–789.
- [25] R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833-1840.
- [26] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- [27] M. N. O'Boyle, G. J. Vos, GaussSum 1.0, to be found under http://gausssum.sourceforge.net, Dublin City University, Dublin (Ireland), 2005
- [28] a) L. Laaksonen, J. Mol. Graphics 1992, 10, 33–34; b) D. L. Bergman, L. Laaksonen, A. Laaksonen, J. Mol. Graphics Modell. 1997, 15, 301–306.

Received: February 5, 2007 Published online: May 10, 2007